在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角。 1菱形的判定定理 1.四条边都相等的四边形是菱形; 2.对角线互相垂直的平行四边形是菱形(
2022-05-02
1平行四边形定义 两组对边分别平行的四边形叫做平行四边形。 1.平行四边形属于平面图形。 2.平行四边形属于四边形。 3.平行四边形属于中心对称图形。 2平行四边形判定 1.两组对边分别相等的四边形是平行四边形; 2.
2022-05-02
1求梯形周长和面积的公式 梯形周长=上底+下底+两个腰长 梯形面积=(上底+下底) 高 2 梯形的面积=中位线 高 对角线互相垂直的梯形面积=对角线 对角线 2 2梯形性质 1.梯形的上下两底平行; 2.梯形的中位线(两腰中点相连
2022-05-02
三角形五心是指三角形的重心、外心、内心、垂心、旁心。定义:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。 三角形的性质 1.在平面上三角形的内角和等于180 (内角和定理)。 2.在平面上三角
2022-05-02
直角三角形斜边的中线等于斜边的一半。直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。 直角三角形判定方法 判定1:
2022-05-02
1.如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。2.如果三角形中有一边的中线和这条边上的高重合,那么这个三角形是等腰三角形。3.如果三角形中有一角的角平分线和它所对边的中线
2022-05-02
是平行四边形。平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边
2022-05-02
1轴对称图形定义 在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。比如圆、
2022-05-02
1中心对称图形 在平面内,把一个图形绕着某个点旋转180 ,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。 2对称中心图形的性质 1、对称中心平分中心对称图形内通过
2022-05-02
向量的夹角就是向量两条向量所成角,其范围是在0到180度;而向量夹角的余弦值等于向量的乘积/向量模的积,即cos=ab/(|a| |b|)。这里应当注意,向量是具有方向性的。 向量 在数学中,向量(也称为欧几里得向量、几何向
2022-05-02
线面平行,几何术语。定义为一条直线与一个平面无公共点(不相交),称为直线与平面平行。定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。定理2:平面外一条直线与此平面的垂线垂直,则这条
2022-05-02
线线垂直是指两条线是垂直关系,分为平面两直线垂直和空间两直线垂直两种。 1判定方法 1.当一条直线垂直于一个平面时,则这条直线垂直于平面上的任何一条直线,简称线面垂直则线线垂直。 2.由三垂线定理平面上的一条
2022-05-02
全等三角形判定 1.首先SSS(边边边),即三边对应相等的两个三角形全等。 2.然后SAS(边角边),即三角形的其中两条边对应相等且两条边的夹角也对应相等的两个三角形全等。 3.ASA(角边角),即三角形的其中两个角对应相
2022-05-02
《几何原本》中的定义:当一条直线和另一条横的直线交成的邻角彼此相等时,这些角的每一个被叫做直角,而且称这一条直线垂直于另一条直线。角度比直角小的称为锐角,比直角大而比平角小的称为钝角。 1直角角度 两条
2022-05-02
凸多边形是一个内部为凸集的简单多边形。凸多边形指如果把一个多边形的所有边中,任意一条边向两方无限延长成为一直线时,其它各边都在此直线的同旁,那么这个多边形就叫做凸多边形,其内角应该全不是优角,任意两
2022-05-02
B闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐蹭罕濠德板€曢幊搴㈩攰闂備胶绮崝鏇㈠箹椤愩倖鍠嗛柨鏇炲€归悡銉╂煟閺囩偛鈧湱鈧熬鎷�
C闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇氶檷娴滃綊鏌涢幇鍏哥敖闁活厽鎹囬幃妤呭垂椤愩倖鎲欐繝娈垮枟婵炲﹪寮婚妸鈺傚亞闁稿本绋戦锟�闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鍓х帛閸嬨倝鏌曟繛鐐珔缂佲偓婢跺绠鹃柛鈩兩戠亸顓犵磼閳ь剟宕掗悙瀵稿弳闂佺粯娲栭崐鍦偓姘炬嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣銏⑶圭壕濠氭煙閸撗呭笡闁绘挻鐟х槐鎺斺偓锝庡亜椤曟粓鏌熼惂鍝ョМ闁哄矉缍侀獮娆撳礋椤掆偓椤忥拷闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣銏⑶圭壕濠氭煙閸撗呭笡闁绘挻鐟х槐鎺斺偓锝庝簽娴犮垺銇勯幒瀣伄闁诡噮鍣i弫鎾绘晸閿燂拷
D婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸嬪鏌曡箛瀣偓鏇㈢嵁閵忥紕绠鹃柛鈩兠悞楣冩煕閻曞倹瀚�
F缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾鐎规洘鍔欏畷顐﹀Ψ閿曗偓鎼村﹪姊鸿ぐ鎺戜喊闁哥姵宀搁幃铏節濮橆厾鍙嗛梺缁樻礀閸婂湱鈧熬鎷�
G濠电姴鐥夐弶搴撳亾濡や焦鍙忛柣鎴f绾剧粯绻涢幋娆忕仾闁稿﹨鍩栫换婵嬫濞戞艾鈪遍梺缁樼矊椤兘寮婚妸鈺傚亞闁稿本绋戦锟�
H闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ャ劎顩烽悗锝庝簻閸嬪秹姊洪崗鑲┿偞闁哄懏绻堥幃铏節濮橆厾鍙嗛梺缁樻礀閸婂湱鈧熬鎷�闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐叉疄婵°倧绲介崯顖炲磻鐎n喗鐓欓柣妤€鐗婄欢鑼棯閹岀吋闁哄被鍔戦幃銈夊磼濞戞﹩浼�
J濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰斀缂傛碍绻涢崱妯哄Е婵炲牏鏅槐鎺斺偓锝庡幗绾爼鏌¢崱顓犵暤闁哄被鍔戦幃銈夊磼濞戞﹩浼�
N闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩顔瑰亾閸愵喖骞㈡繛鎴烆焸閿曞倹鐓熼柟閭﹀墯閹牓鎮峰▎娆戠暤闁哄被鍔戦幃銈夊磼濞戞﹩浼�闂傚倸鍊峰ù鍥敋瑜旈弻濠囨晲婢跺﹦鍔﹀銈嗗笂閼冲爼濡撮幒妤佺厱闁哄倽娉曟晥闂佽鍠楁灙缂佺姵鐩俊鐑芥晝閳ь剟顢旈敓锟�
Q闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸劍閸嬪鈹戦悩鎻掝仾闁哄棙绮撻弻鐔兼倻濮楀棙鐣烽梺绋垮椤ㄥ﹪寮婚妸鈺傚亞闁稿本绋戦锟�
S婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌熼梻瀵稿妽闁哄懏绻堥弻鏇熷緞閸℃ɑ鐝旂紓浣哄У閻擄繝寮婚妸鈺傚亞闁稿本绋戦锟�濠电姷鏁告慨鐑藉极閹间礁纾块柟瀵稿Т缁躲倝鏌﹀Ο渚Ш闁哄棴闄勯妵鍕箳閸℃ぞ澹曢梻浣瑰濞插繘宕规禒瀣瀬闁瑰墽绮弲鎼佹煥閻曞倹瀚�闂傚倸鍊搁崐宄懊归崶銊х彾闁割偁鍎洪弫瀣喐韫囨稑绠查柕蹇嬪€曠粻娑欍亜閺傚灝鈷旀鐐存崌濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟�濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴欏灪閸ゆ劖銇勯弽顐沪闁稿顑夐弻鐔兼倷椤掑倻鐛梺鎸庣箓椤︿即寮查幖浣圭叆闁绘洖鍊圭€氾拷闂傚倸鍊搁崐鐑芥倿閿曗偓椤啴宕稿Δ鈧崒銊モ攽閸屾簱褰掓偪椤曗偓閺屾稖顦虫い銊ョ箻瀵偅绻濋崟銊ヤ壕妤犵偛鐏濋崝姘繆椤愶絿鎳囩€规洘娲熼幃銏ゅ礂閼测晛寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�
T婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸婂爼鏌涢鐘插姎闁汇倗鍋撶换婵囩節閸屾稑娅ら梺鍝ュТ濡繈寮婚妸鈺傚亞闁稿本绋戦锟�婵犵數濮烽弫鍛婃叏娴兼潙鍨傚ù鐘茬憭閻戣棄纾兼繛鎴炲嚬濞茬ǹ鈹戦悩璇у伐闁瑰啿绻樺鍐测堪閸喓鍙嗛梺缁樻礀閸婂湱鈧熬鎷�
W濠电姷鏁告慨鐢割敊閺嶎厼绐楁俊銈呭暞瀹曟煡鏌熼幍顔碱暭闁抽攱妫冮弻娑㈠即閵娿儳浠梺绋垮閸ㄥ潡寮婚妸鈺傚亞闁稿本绋戦锟�闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢敃鈧悿顕€鏌eΔ鈧悧蹇曠不妤e啯鐓冪憸婊堝礈閻旂厧钃熼柍鈺佸暟閻熺懓鈹戦悩鎻掓殭妞ゅ骏鎷�
X闂傚倸鍊峰ù鍥х暦閻㈢ǹ绐楅柟鎷屽焽閳ь剙鍟村畷銊р偓娑櫭埀顒冨煐缁绘繈妫冨☉鍗炲壉闂佺ǹ顑傞弲鐘诲蓟閵娾晜鍋嗛柛灞剧☉椤忥拷
Z闂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т缁愭淇婇妶鍛櫣闁搞劌鍊块弻锝夊閵忊剝姣勯梺缁樼矊椤兘寮婚妸鈺傚亞闁稿本绋戦锟�