能够完全重合的两个三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形状,大小完全相同,相似比是k=1。全等三角形一定是相似三角形,而相似三角形不一定是全等三角
2010-01-08
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。2.相似三角形周长的比等于相似比。3.相似三角形面积的比等于相似比的平方注意:全等是特殊的相似,即相似
2010-01-08
相似三角形的判定1.两个三角形的两个角对应相等2.两边对应成比例,且夹角相等3.三边对应成比例4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。相似三角形的判定方法根据相似图
2010-01-08
1、概念:三条边对应成比例,三个角对应相等的两个三角形叫相似三角形。2、相似比:在相似三角形中,对应边的比叫作这两个三角形的相似比。3、全等三角形:形状和大小都相同的三角形称为全等三角形。全等三角形是相
2010-01-08
摘要:培养学生的动手能力,是素质教育的要求,因此,复习时,要多创设机会,让学生动手操作。让学生动手画一画,摆一摆,拼一拼,在活动中巩固与加深对基础知识的理解,同时培养学生初步的空间观念。例如,让学生用
2009-11-11
摘要:知识目标:1、经历三角形相似的判定定理1的探索及证明过程。2、能应用定理1判定两个三角形相似,解决相关问题。能力目标:1、让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题、解决问题
2009-11-11
摘要:切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心初中数学几何定理1。同角(或等角)的余角相等。3。对顶角相等。5。三角形的一
2009-11-11
摘要:135①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)初中几何公式、定理复习指导(六)135①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r
2009-11-11
摘要:切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角初中几何公式、定理复习指导(五)112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114
2009-11-11
摘要:定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似初中几何公式、定理复习指导(四)86平行线分线段成比例定理三条平行线截两条直线,所得的
2009-11-11
摘要:平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等初中几何公式、定理复习指导(三)63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都
2009-11-11
摘要:推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)初中几何公式、定理复习指导(二)31推论1等腰三角形顶角的平
2009-11-11
摘要:1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等初中几何公式、定理复习指导(一)1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等
2009-11-11
摘要:近两年,中考数学试卷中降低了对平面几何的要求,但就此认为对于学生的思维训练可以放松,那就错了。数学始终应包含其特有的知识、思想与方法、活动应用、知识审美等四个层面,而培养一名学生严密的逻辑思维能
2009-11-11
摘要:日前,天津经报进修学院教学系列丛书又有新作,由天津一中数学高级教师吕学林编著的《一题多解》题集将于近期再版,除向参加名师之旅助学活动的初三年级学生免费发放之外,经报学院扩大了印刷规模,10月底全市
2009-11-11
B闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愯弓缃曟繝寰锋澘鈧洟骞婃惔銏╂敯闂傚倷鑳剁划顖炲礉閺囥垹绠规い鎰╁€栭崰鍡涙煥閺囩偛鈧綊鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷
C闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴姘舵濞存粌缍婇弻娑㈠箛閸忓摜鏁栭梺娲诲幗閹瑰洭骞冨Δ鍛瀭妞ゆ劑鍊栭幉娆愮節濞堝灝鏋熷┑鐐诧躬瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀缁犵娀鏌熼崜褏甯涢柛瀣ㄥ€濋弻鏇熺箾閻愵剚鐝旂紓浣插亾濠㈣泛顑囩粻楣冩煕閳╁叐鎴犱焊椤撶姷纾奸柍褜鍓熷畷鎺楁倷鐎电ǹ寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i姀鈶跺湱澹曟繝姘厵闁告挆鍛闂佺粯鎸婚悷褏妲愰幒鏂哄亾閿濆骸浜滄い鏇熺矒閺岀喖鎯傞崫銉滈梺鍝勭焿缂嶄線鐛▎鎾崇妞ゆ巻鍋撴い蹇ユ嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i姀鈶跺湱澹曟繝姘厵闁告挆鍛闂佺粯鎸婚悷褏妲愰幒鏂哄亾閿濆簼绨藉ù鐘灪閵囧嫰骞掔€n亞浼勯梺璇″櫘閸o綁寮幘缁樻櫢闁跨噦鎷�
D濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿顦甸弻鏇$疀鐎n亖鍋撻弴銏㈠祦闁靛骏绱曠粻楣冩煕閳╁厾顏堟倿妤e啯鐓曢柣鏇炲€圭€氾拷
F缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕閻庤娲橀崝娆忕暦椤愶箑唯闁挎洍鍋撻幖鏉戯躬濮婇缚銇愰幒鎴滃枈闂佸摜濮靛畝鎼佸箖閾忣偆绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
G婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁惧墽绮换娑㈠箣濞嗗繒浠鹃梺绋匡龚閸╂牜鎹㈠┑瀣棃婵炴垶鑹鹃埅閬嶆⒑缂佹ḿ鐭婃い顓犲厴瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
H闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儯鍔庨々鐑芥倵閿濆簼绨婚柛瀣Ч濮婃椽宕楅懖鈹垮仦闂佸搫鎳忕换鍫ュ箖閾忣偆绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愬弶鐤勫┑掳鍊х徊浠嬪疮椤栫偛纾婚悗锝庡枟閻撴瑩鏌eΔ鈧悧濠勬閼碱剛妫柟顖嗗瞼鍚嬮梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�
J婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒€鏂€缂傚倹纰嶇换娑㈠幢濡搫袝濠电偛鐗忛弲顐ゆ閹烘柡鍋撻敐搴″箺缁绢厼鐖奸弻锟犲幢椤撶姷鏆ら梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�
N闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐椤旂懓浜鹃柛鎰靛枛楠炪垺绻涢幋鐑嗙劯闁挎洖鍊归悡鐔兼煙闁箑澧柟顖氱墦閹嘲鈻庡▎鎴犳殼闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滄棃寮绘繝鍥ㄦ櫜濠㈣泛锕﹂崝锕€顪冮妶鍡楃瑐闁煎啿鐖兼俊鎾箳濡や胶鍘遍梺鍝勫€藉▔鏇熸櫏闂備浇顕栭崰妤佺仚缂備胶濮甸惄顖涗繆閻戣姤鏅濋柍褜鍓熼、鏃堟晸閿燂拷
Q闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵稿妽闁稿顑呴埞鎴︽偐閹绘帩浠鹃梺鍝勬缁捇寮婚悢鍏煎€绘慨妤€妫欓悾鐑芥⒑缁嬪灝顒㈡い銊ワ躬瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
S濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔兼⒒鐎电ǹ濡介梺鍝勬噺缁诲牓寮婚弴鐔风窞闁糕剝蓱閻濇梻绱撴担鍝勑i柣鎿勭節瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧潡鏌熺€电ǹ孝缂佽翰鍊濋弻锕€螣娓氼垱楔闂佸搫妫撮梽鍕Φ閸曨垰绠抽柛鈩冦仦婢规洟姊绘担鐟邦嚋婵炴彃绻樺畷瑙勭鐎n亝鐎梺鐟板⒔缁垶寮查幖浣圭叆闁绘洖鍊圭€氾拷闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊閵娧呭骄闂佸壊鍋侀崕娲极鐎n剚鍠愰煫鍥ㄧ☉缁犳煡鏌曡箛瀣偓鏇犵不濞戞瑣浜滈柡鍌氱仢閳锋梹顨ラ悙瀛樺磳婵﹨娅i幑鍕Ω閵夛妇褰氶梻浣烘嚀閸ゆ牠骞忛敓锟�婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋娆忕仾闁搞倖鍔栭妵鍕冀椤愵澀娌梺绋款儏椤戝寮婚悢鍏煎€锋い鎺戝€婚悰顕€姊洪幐搴g畵妞わ缚鍗冲鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷�闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇楀亾妞ゎ亜鍟村畷绋课旈埀顒勫磼閵娿儮鏀介柛灞剧氨瑜版帗鍋い鏇楀亾闁哄本绋栭ˇ铏亜閵娿儳绠荤€殿噮鍋呯换婵嬪礋閵娿儰澹曞Δ鐘靛仜閻忔繈宕濆顓濈箚妞ゆ劧绲块幊鍥┾偓瑙勬礃濞茬喖骞冮姀銈呯闁兼祴鏅涘鎶芥⒒娴h櫣甯涙繛鍙夌墵瀹曟劙宕烽娑樹壕婵ḿ鍋撶€氾拷
T濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿﹤鐖奸弻娑㈩敃閻樻彃濮庨梺姹囧€楅崑鎾舵崲濠靛洨绡€闁稿本绋戝▍銈夋⒑閸濄儱孝婵☆偅绻堝濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倸霉閻樿尙鎲柣鎴f绾惧吋绻涢幋鐐插毈婵炶尙枪閳规垿鎮╃拠褍浼愰梺鐟板暱缁绘ê顕i崘娴嬪牚闁割偆鍠撻崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
W婵犵數濮烽弫鍛婃叏閻㈠壊鏁婇柡宥庡幖缁愭淇婇妶鍛殲鐎规洘鐓¢弻鐔煎箥椤旂⒈鏆梺鎶芥敱濡啴寮诲☉銏犲嵆闁靛ǹ鍎虫禒顓㈡⒑缁嬪灝顒㈤柛銊ユ健瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剟鎮块鈧弻锝呂旈埀顒勬偋韫囨洜涓嶅Δ锝呭暞閻撳啰鎲稿⿰鍫濈闁绘梻鍘ч拑鐔兼煃閳轰礁鏆熼柣鐔烘嚀閳规垿鎮╅幓鎺撴濡炪倕楠忛幏锟�
X闂傚倸鍊搁崐宄懊归崶褏鏆﹂柣銏⑶圭粣妤呮煙閹峰苯鐒介柍褜鍓欓崯鏉戠暦閵娧€鍋撳☉娅亪鍩€椤掑啫鐓愮紒缁樼箞濡啫鈽夐崡鐐插闂備胶枪椤戝倿寮查悩璇茶摕闁靛ň鏅滈崑鍡涙煕鐏炲墽鈽夋い蹇ユ嫹
Z闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢紒鎰殕娣囧﹪濡堕崨顔兼闂佹悶鍔岄崐鍧楀蓟閿濆顫呴柕蹇婂墲濮e嫰姊虹紒妯肩煀妞ゎ厾鍏樺濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�