如图,在平面直角坐标系中,半圆M的圆心M在x轴上,半圆M交x轴于A(-1,0)、B(4,0)两点,交y轴于点C,弦AC的垂直平分线交y轴于点D,连接AD并延长交半圆M于点E. (1)求经过A、B、C三点的抛物线的解析式;
2019-09-02
如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积; (3)在x轴的正半轴上有一点P,作PQ x轴交BC于Q,设
2019-09-02
如图所示,在直角坐标系中,⊙P经过原点O,且与x轴、y轴分别相交于A(-6,0)、B(0,-8)两点,两点。 (1)求直线AB的函数表达式; (2)有一开口向下的抛物线过B点,它的对称轴平行于y轴且经过点P,顶点C
2019-09-02
圆 易错点1:对虎弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。 易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。
2019-09-01
新初三快扫码关注 中考网微信公众号 每日推送学习技巧,学科知识点 助你迎接2020年中考!
2019-08-30
在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C,过点C作圆的切线交x轴于点D. (1)求点C的坐标和过A,B,C三点的抛物线的解析式; (2)求点D的坐标; (3)设平行于x轴
2019-08-30
如图,在平面直角坐标系中,直线y=kx+b与x轴负半轴交于点A,与y轴正半轴交于点B,⊙P经过点A、点B(圆心P在x轴负半轴上),已知AB=10,AP=25/4 . (1)求点P到直线AB的距离; (2)求直线y=kx+b的解析式
2019-08-30
如图,在平面直角坐标系中,以点A(-3,0)为圆心、5为半径的圆与x轴相交于点B、C两点(点B在点C的左边),与y轴相交于D、M两点(点D在点M的下方). (1)求以直线x=-3为对称轴、且经过D、C两点的抛物线的解析
2019-08-30
如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C. (1)求抛物线
2019-08-30
如图,在直角梯形ABCD中,AD∥BC, ABC=90?,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动,P、Q分别从点A、C同时出发
2019-08-30
如图,⊙M与x轴相切于点A( ,0),⊙M交y轴正半轴于B,C两点,且BC=4. (1)求⊙M的半径; (2)求证:四边形ACBM为菱形; (3)若抛物线经过O,A两点,且开口向下,当它的顶点不在直线AB的上方时,求a的
2019-08-30
如图1,直线y=3/4x-1与抛物线y=-1/4x 2交于A,B两点(A在B的左侧),与y轴交于点C. (1)求线段AB的长; (2)若以AB为直径的圆与直线x=m有公共点,求m的取值范围; (3)如图2,把抛物线向右平移2个单
2019-08-30
如图,在平面直角坐标系中,半圆M的圆心M在x轴上,半圆M交x轴于A(-1,0)、B(4,0)两点,交y轴于点C,弦AC的垂直平分线交y轴于点D,连接AD并延长交半圆M于点E. (1)求经过A、B、C三点的抛物线的解析式;
2019-08-30
如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积; (3)在x轴的正半轴上有一点P,作PQ x轴交BC于Q,设
2019-08-30
如图所示,在直角坐标系中,⊙P经过原点O,且与x轴、y轴分别相交于A(-6,0)、B(0,-8)两点,两点。 (1)求直线AB的函数表达式; (2)有一开口向下的抛物线过B点,它的对称轴平行于y轴且经过点P,顶点C
2019-08-30