新一轮中考复习备考周期正式开始,中考网为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:一元二次方程求解方法》,仅供参考!
一元二次方程求解方法
1、直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如(x+a)2=b的一元二次方程。根据平方根的定义可知,x+a是b的平方根,
2、配方法
配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式
3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程ax2+bx+c=0(a≠0)的求根公式:
公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c
4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式。
(4)根与系数的关系的应用:
①验根:不解方程,利用根与系数的关系可以检验两个数是不是一元二次方程的两根;
②求根及未知数系数:已知方程的一个根,可利用根与系数的关系求出另一个数及未知数系数.
③求代数式的值:在不解方程的情况下,可利用根与系数的关系求关于 和 的代数式的值,如
④求作新方程:已知方程的两个根,可利用根与系数的关系求出一元二次方程的一般式. 一元二次方程的应用:方程是解决实际问题的有效模型和工具.利用方程解决。
欢迎使用手机、平板等移动设备访问中考网,2023中考一路陪伴同行!>>点击查看