来源:网络资源 作者:中考网整理 2019-05-01 20:01:48
学习就是一个积累的过程, 小编为大家整理了相关 内容,以供大家参考。
学习方法:对比
(一)标出序列号: 的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比较:
给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
例如:1,9,25,49,(),(),的第n为(2n-1)2
(三)看例题:
A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1
B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关 即:2n
(四)有的可对每位数同时减去第一位数,成为第二位开始的新 ,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5
分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 : 4,16,36,64,?,144,196,… ?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别
以上就是小编为大家整理学习内容,预祝大家可以更好的学习,取得优异的成绩。更多内容请关注 网。
欢迎使用手机、平板等移动设备访问中考网,2023中考一路陪伴同行!>>点击查看