Image Modal
快捷导航 中考政策指南 2024热门中考资讯 中考成绩查询 历年中考分数线 中考志愿填报 各地2019中考大事记 中考真题及答案大全 历年中考作文大全 返回首页
您现在的位置:中考 > 初中数学 > 学习方法 > 正文

2020年数学学习方法:谈特殊四边形的识别

来源:网络资源 作者:中考网整理 2019-08-31 17:43:36

中考真题

智能内容
  特殊的平行四边形及等腰梯形式四边形的主要内容,它们的应用非常广泛。现就它们的识别条件举例说明,供同学们参考。
 
  一、平行四边形
 
  例1  如图1,有一矩形纸片ABCD,翻折∠B、∠D,使BC、AD恰好落在AC上。设F、H分别是B、D落在AC上的点,E、G分别是折痕CE、AG与AB、CD的交点。求证:四边形AECG是平行四边形。
 
è°ˆç‰1殊四è¾1形的èˉ†åˆ«
 
  谈特殊四边形的识别
 
  分析:要证明四边形AECG是平行四边形,题中已有条件CG∥AE,因此可考虑证明CG=AE,利用“一组对边平行且相等的四边形是平行四边形”;也可以考虑证明AG∥CE,利用“两组对边分别平行的四边形是平行四边形”。下面用第二种思路证明。
 
  证明:在矩形ABCD中,因为AD∥BC,所以∠DAC=∠BCA。由题意,得∠GAH=∠DAC,∠ECF=∠BCA,所以∠GAH=∠ECF,所以AG∥CE 。又因为CG∥AE,所以四边形AECG是平行四边形。
 
  点评:平行四边形常见的判定方法还有:①两组对边分别相等的四边形;②对角线互相平分的四边形;③两组对角分别相等的四边形。运用时,要灵活选择。如果一种方法不易解出,可以尝试其他的方法。
 
  二、矩形
 
  例2  如图2,在△ABC中,AB=AC。AD⊥BC,垂足为点D。AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E。求证:四边形ADCE为矩形。
 
è°ˆç‰1殊四è¾1形的èˉ†åˆ«
 
  谈特殊四边形的识别
 
  分析:要证明四边形ADCR为矩形,题设中已有两个角是直角的条件,可考虑利用“有三个角是直角的四边形是矩形”来证明,故只要证明∠DAE是直角即可。
 
  证明:在△ABC中,AB=AC,AD⊥BC,所以∠BAD=∠DAC。因为AN是△ABC外角∠CAM的平分线,所以∠MAE=∠CAE。故∠DAE=∠DAC+∠CAE=。又因为AD⊥BC,CE⊥AN,所以四边形ADCE为矩形。
 
  点评:矩形常见的判定方法有:①三个角是直角的四边形;②有一个角是直角的平行四边形;③两条对角线相等的平行四边形。
 
  三、菱形
 
  例3  如图3,在梯形纸片ABCD中,AD∥BC,AD>CD。将纸片沿过点D的直线折叠,使点C落在AD上的点C1处,折痕DE交BC于点E。求证:四边形CDC1E是菱形。
 
è°ˆç‰1殊四è¾1形的èˉ†åˆ«
 
  谈特殊四边形的识别
 
  分析:由于是折叠问题,因此有很多边相等、角相等,可以考虑利用“四条边都相等的四边形是菱形”来证明。
 
  证明:由题意可知△CDE≌△C1DE,则有CD=C1D,∠C1DE=∠CDE,CE=C1E。因为AD∥BC,所以∠C1DE=∠CED。故∠CDE=∠CED,于是CD=CE。所以CD=C1D=C1E=CE,四边形CDC1E是菱形。
 
  点评:菱形常见的判定方法有:①四条边都相等的四边形;②有一组邻边相等的平行四边形;③对角线互相垂直的平行四边形。在折叠问题中,如果有平行线的条件,一般都会有等腰三角形存在。这点应当重视。
 
  四、正方形
 
  例4  如图4所示,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O。若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加的一个条件是          。
 
è°ˆç‰1殊四è¾1形的èˉ†åˆ«
 
  谈特殊四边形的识别
 
  分析:这是一道开放型题目。根据已知条件知四边形ABCD是菱形,要使四边形ABCD是正方形,按其判定方法只要增加条件∠BAD=90°,或∠ABD=45°,或AC=BD等。
 
  解:略。
 
  点评:正方形常见的判定方法有:①有一组邻边相等的矩形;②有一个角是直角的(或对角线相等的)菱形。
 
  五、等腰梯形
 
  例5  如图5,在等腰△ABC中,AB=AC。BD⊥AC,CE⊥AB,垂足分别为点D、E,连接DE。求证:四边形BCDE是等腰梯形。
 
  谈特殊四边形的识别
 
è°ˆç‰1殊四è¾1形的èˉ†åˆ«
 
  分析:要证明四边形BCDE是等腰梯形,首先要证明它是梯形,再证明其两腰相等即可。由图形知BE与CD显然不平行,因此要证明DE∥BC,可通过“同位角相等,两直线平行”来解决。要证明这个梯形是等腰梯形,可通过说明两腰相等的方法达到。
 
  证明:在等腰△ABC中,AB=AC,∠ABC=∠ACB。因为BD⊥AC,CE⊥AB,所以∠BEC=∠CDB=90°。又BC=CB,所以△BEC≌△CDB(AAS)。于是BE=CD。从而AB-BE=AC-CD,即AE=AD。所以∠AED=∠ADE。所以∠ABC=∠AED=(180°-∠A)。所以DE∥BC。而BE与CD不平行,所以四边形BCDE是梯形。又因为BE=CD,故四边形BCDE是等腰梯形。
 
  点评:等腰梯形常见的判定方法有:①两腰相等的梯形;②同一底上的两个角相等的梯形;③对角线相等的梯形。
 
新初三快扫码关注
 
中考网微信公众号
 
每日推送学习技巧,学科知识点
 
助你迎接2020年中考!
 
 

   欢迎使用手机、平板等移动设备访问中考网,2023中考一路陪伴同行!>>点击查看

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

  • 欢迎扫描二维码
    关注高考网微信
    ID:www_gaokao_com

  • 欢迎微信扫码
    关注初三学习社
    中考网官方服务号

热点专题

  • 2024年全国各省市中考作文题目汇总
  • 2024中考真题答案专题
  • 2024中考查分时间专题

[2024中考]2024中考分数线专题

[2024中考]2024中考逐梦前行 未来可期!

中考报考

中考报名时间

中考查分时间

中考志愿填报

各省分数线

中考体育考试

中考中招考试

中考备考

中考答题技巧

中考考前心理

中考考前饮食

中考家长必读

中考提分策略

重点高中

北京重点中学

上海重点中学

广州重点中学

深圳重点中学

天津重点中学

成都重点中学

试题资料

中考压轴题

中考模拟题

各科练习题

单元测试题

初中期中试题

初中期末试题

中考大事记

北京中考大事记

天津中考大事记

重庆中考大事记

西安中考大事记

沈阳中考大事记

济南中考大事记

知识点

初中数学知识点

初中物理知识点

初中化学知识点

初中英语知识点

初中语文知识点

中考满分作文

初中资源

初中语文

初中数学

初中英语

初中物理

初中化学

中学百科