快捷导航 中考政策指南 2024热门中考资讯 中考成绩查询 历年中考分数线 中考志愿填报 各地2019中考大事记 中考真题及答案大全 历年中考作文大全 返回首页
您现在的位置:中考 > 初中数学 > 几何辅导 > 正文

一道解《多边形的内角和》题型的十种解法

来源:网络资源 作者:中考网整理 2019-09-02 10:55:45

中考真题

智能内容
  在一次《多边形的内角和》的课堂上,有一个教学环节是这样设计的:让学生思考任意一个四边形的内角和是多少?用这种方法能否求五边形、六边形等多边形的内角和?[1]而在课堂上,同学们给出了许多种求四边形内角和的方法,虽然有的方法不太适合推广到五边形、六边形,但其中不乏有课前我没有意料到的方法,当然我也没想到学生们会有如此多的方法。为了不打断学生的想法,给学生一个展示自我的机会,更为了拓展学生的思维,我抓住了这一难得的机会,充分让学生展示他们活跃的思维,而把预先准备的一些内容放到了下一节课。我不知道这样做好不好,但至少有一点,学生们主动地进行了观察、实验、猜测、验证、推理与交流等数学活动,这是一个生动活泼的、主动的和富有个性的过程,增强了学生学习数学的兴趣,使不同的人在数学上得到了不同的发展[2]。下面就一一列举学生们的解法,其中解法一~解法五是预先设计的。
 
  解法一:如图1,连接AC,四边形ABCD的内角和等于两个三角形内角和的和,即180°×2=360°。
 
  解法二:如图2,连接AC、BD,四边形ABCD的内角和等于四个三角形内角和的和减去360°,即180°×4-360°=360°。
 
  解法三:如图3,在四边形ABCD内取一点P,连接PA、PB、PC、PD,四边形ABCD的内角和等于四个三角形内角和的和减去360°,即180°×4-360°=360°。
 
  解法四:如图4,在BC边上取一点P,连接PA、PD,四边形ABCD的内角和等于三个三角形内角和的和减去180°,即180°×3-180°=360°。
 
  中考数学知识点,多边形,内角和
 
  解法五:如图5,在四边形ABCD外取一点P,连接PA、PB、PC、PD,四边形ABCD的内角和等于三个三角形内角和的和减去180°,即180°×3-180°=360°。
 
  解法六:如图6,连接BD,延长BA至E,延长BC至F,∵∠EAD=∠ABD+∠BDA,∠FCD=∠CBD+∠BDC,∴四边形ABCD的内角和等于(∠EAD+∠BAD)+(∠FCD+∠BCD)=180°+180°=360°。
 
  解法七:如图7,过点A、D分别作BC的平行线AE、DF,则∠EAB=∠B,∠EAD=∠ADF,∠CDF=∠C,∴四边形ABCD的内角和等于∠BAD+∠EAB+(∠CDF+∠CDA)=∠BAD+∠EAB+∠ADF =∠BAD+∠EAB+∠EAD =360°。
 
  解法八:如图8,过点A、D分别作BC的垂线AE、DF,垂足分别为E、F,过点A作DF的垂线AG,垂足为G,则∠AEC=∠DFB=∠AGF=∠EAG=90°,∵∠AEC=∠B+∠BAE,∠DFB=∠C+∠CDF,∠AGF=∠DAG+∠ADF,∴四边形ABCD的内角和等于∠AEC+∠DFB+∠AGF+∠EAG=90°×4=360°。
 
  解法九:若AB//CD,则∠B+∠C=∠A+∠D=180°,∴∠B+∠C+∠A+∠D=360°;若AB不平行于CD,如图9,不妨设BA、CD的延长线相交于点E,∵∠BAD=∠E+∠ADE,∠ADC=∠E+∠EAD,∴∠B+∠C+∠BAD+∠ADC=(∠B+∠C+∠E)+(∠ADE +∠E+∠EAD) =180°+180°=360°。综上可得,四边形ABCD的内角和等于360°
 
  解法十:连接AC,并延长至G,过点C分别作AD、AB的平行线CE、CF,则∠D=∠DCE,∠DAC=∠ECG,∠BAC=∠FCG,∠B=∠FCB,∴四边形ABCD的内角和=∠B+∠BAC+∠CAD+∠D+∠BCD =∠FCB+∠FCG +∠ECG +∠DCE +∠BCD =360°。
 
  以上这些证法中,充分发挥了学生的想象力、综合运用知识的能力,很好地训练了学生的思维,体现了“转化”这一重要数学思想方法地灵活运用,这一点对学生的发展很重要,而这也是新课程标准所倡导的。这堂课可能是一节不合格的课,但我还是希望我们数学老师能在课堂上不断探索、试验,大胆创新,只要我们本着新课程的理念,本着以学生的发展为本,相信中国数学教育的未来一定会取得辉煌的成绩。
 
新初三快扫码关注
 
中考网微信公众号
 
每日推送学习技巧,学科知识点
 
助你迎接2020年中考!
 
 

   欢迎使用手机、平板等移动设备访问中考网,2023中考一路陪伴同行!>>点击查看

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

  • 欢迎扫描二维码
    关注高考网微信
    ID:www_gaokao_com

  • 欢迎微信扫码
    关注初三学习社
    中考网官方服务号

热点专题

  • 2024年全国各省市中考作文题目汇总
  • 2024中考真题答案专题
  • 2024中考查分时间专题

[2024中考]2024中考分数线专题

[2024中考]2024中考逐梦前行 未来可期!

中考报考

中考报名时间

中考查分时间

中考志愿填报

各省分数线

中考体育考试

中考中招考试

中考备考

中考答题技巧

中考考前心理

中考考前饮食

中考家长必读

中考提分策略

重点高中

北京重点中学

上海重点中学

广州重点中学

深圳重点中学

天津重点中学

成都重点中学

试题资料

中考压轴题

中考模拟题

各科练习题

单元测试题

初中期中试题

初中期末试题

中考大事记

北京中考大事记

天津中考大事记

重庆中考大事记

西安中考大事记

沈阳中考大事记

济南中考大事记

知识点

初中数学知识点

初中物理知识点

初中化学知识点

初中英语知识点

初中语文知识点

中考满分作文

初中资源

初中语文

初中数学

初中英语

初中物理

初中化学

中学百科