来源:网络资源 2021-09-04 10:12:57
1三角函数和差公式有哪些
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
2三角函数和差公式推导
首先,我们知道sin(a+b)=sinacosb+cosasinb,sin(a-b)=sinacosb-cosasinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sinacosb
同理,若把两式相减,就得到cosasinb=[sin(a+b)-sin(a-b)]/2
同样的,我们还知道cos(a+b)=cosacosb-sinasinb,cos(a-b)=cosacosb+sinasinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosacosb
同理,两式相减我们就得到sinasinb=-[cos(a+b)-cos(a-b)]/2
这样,我们就得到了积化和差的公式:
cosasinb=[sin(a+b)-sin(a-b)]/2
sinasinb=-[cos(a+b)-cos(a-b)]/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]
sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]
cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]
cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2]
欢迎使用手机、平板等移动设备访问中考网,2025中考一路陪伴同行!>>点击查看
欢迎扫描二维码
关注中考网微信
ID:zhongkao_com
欢迎扫描二维码
关注高考网微信
ID:www_gaokao_com
欢迎微信扫码
关注初三学习社
中考网官方服务号
C闂傚倷鐒﹁ぐ鍐矓鐎垫瓕濮抽柨鐕傛嫹闂備胶鎳撻悺銊╁礉濞嗘挸绀傞柨鐕傛嫹闂傚倸鍊甸崑鎾绘煙缁嬫寧鎹i柣鎿勬嫹闂傚倸鍊甸崑鎾绘煙缁嬪灝顒㈢悮锟�
H闂備礁鎼ˇ浠嬪储閼测晝鐜婚柨鐕傛嫹闂備礁鎲¢懝楣冩偋閹版澘纾婚柨鐕傛嫹
N闂備礁鎲¢〃鍡涘Φ閻愬搫瑙﹂柨鐕傛嫹闂佽閰i埀顒佺〒閸斿秹鎮樿箛銉﹀
S濠电偞鍨堕幐鎼佹晝閵夆晛绠查柨鐕傛嫹婵犵數鍎戠徊钘夌暦椤掆偓閿曘垽鏁撻敓锟�闂備浇澹堥褏鎹㈤幇顔剧幓闁跨噦鎷�婵犵數鍋涢懟顖炴偋閹炬緞锝夋晸閿燂拷闂備焦妞块崢濂稿疮閸ф鏁婄€广儱妫欓崕鐔兼煥閻曞倹瀚�
T濠电姰鍨归悘鍫ュ疾濠婂懏鍠嗛柨鐕傛嫹濠电姰鍨介·鍌涚濠婂懏鏆滈柨鐕傛嫹