来源:网络资源 2022-05-03 17:41:03
三角函数常用诱导公式
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinαk∈z
cos(2kπ+α)=cosαk∈z
tan(2kπ+α)=tanαk∈z
cot(2kπ+α)=cotαk∈z
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
相关推荐:
关注中考网微信公众号
每日推送中考知识点,应试技巧
助你迎接2022年中考!
欢迎使用手机、平板等移动设备访问中考网,2025中考一路陪伴同行!>>点击查看
C闂傚倸鍊烽悞锕併亹閸愵亞鐭撻悗鍨摃婵娊鏌ㄩ悤鍌涘闂傚倷鑳堕幊鎾绘偤閵娾晛绀夋繛鍡樻尭缁€鍌炴煥閻曞倹瀚�闂傚倸鍊搁崐鐢稿磻閹剧粯鐓欑紒瀣閹癸綁鏌i幙鍕闂傚倸鍊搁崐鐢稿磻閹剧粯鐓欑紒瀣仢椤掋垻鎮敓锟�
H闂傚倷绀侀幖顐λ囨禒瀣偍闁兼祴鏅濋悳濠氭煥閻曞倹瀚�闂傚倷绀侀幉锟犳嚌妤e啯鍋嬮柟鐗堟緲绾惧鏌ㄩ悤鍌涘
N闂傚倷绀侀幉锟犮€冮崱娑樜﹂柣鎰惈鐟欙箓鏌ㄩ悤鍌涘闂備浇顕ч柊锝夊焵椤掍胶銆掗柛鏂跨Ч閹ǹ绠涢妷锕€顏�
S婵犵數鍋為崹鍫曞箰閹间焦鏅濋柕澶嗘櫅缁犳煡鏌ㄩ悤鍌涘濠电姷鏁搁崕鎴犲緤閽樺鏆︽い鎺嗗亾闁挎洏鍨介弫鎾绘晸閿燂拷闂傚倷娴囨竟鍫ヮ敋瑜忛幑銏ゅ箛椤斿墽骞撻梺璺ㄥ櫐閹凤拷濠电姷鏁搁崑娑㈡嚐椤栫偞鍋嬮柟鐐窞閿濆鏅搁柨鐕傛嫹闂傚倷鐒﹀鍧楀储婵傜ǹ鐤柛褎顨忛弫濠勨偓骞垮劚濡瑩宕曢悢鍏肩叆闁绘洖鍊圭€氾拷
T婵犵數濮伴崹褰掓倶閸儱鐤炬繝濠傛噺閸犲棝鏌ㄩ悤鍌涘婵犵數濮伴崹浠嬄烽崒娑氼洸婵犲﹤鎳忛弳婊堟煥閻曞倹瀚�