来源:网络资源 2022-07-14 16:35:22
轴对称
轴对称的定义:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
轴对称的性质:
(1)对应点所连的线段被对称轴垂直平分;
(2)对应线段相等,对应角相等;
(3)关于某直线对称的两个图形是全等图形。
轴对称的判定:
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
这样就得到了以下性质:
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。
4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:
可以通过对称轴的一边从而画出另一边。
可以通过画对称轴得出的两个图形全等。
扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:
关于平面直角坐标系的X,Y对称意义
如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式 )
设二次函数的解析式是 y=ax2+bx+c
则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
譬如,等腰三角形经常添设顶角平分线;
矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
正方形,菱形问题经常添设对角线等等。
另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。
相关推荐:
关注中考网微信公众号
每日推送中考知识点,应试技巧
助你迎接2022年中考!
欢迎使用手机、平板等移动设备访问中考网,2025中考一路陪伴同行!>>点击查看
B闂傚倸鍊风粈渚€骞夐敓鐘冲亱婵°倕鎳庢闂佺粯鍔曢幖顐ゆ喆閿曞倹鐓ラ柣鏇炲€圭€氾拷
C闂傚倸鍊搁崐鐑芥倿閿曚降浜归柛鎰典簽閻捇鎮楅崹顐ゆ憙濠殿喗濞婇弻銊╂偆閸屾稑顏�闂傚倸鍊烽懗鍫曞箠閹剧粯鍋ら柕濞炬櫅缁€澶嬬箾閸℃ɑ灏紒鈧崒鐐寸叆闁绘洖鍊圭€氾拷闂傚倸鍊搁崐鎼佸磹閻㈢ǹ纾婚柟鍓х帛閻撴瑧绱掔€n偄顕滈柟鐧哥秮閺岋綁骞欓崟顒€顏�闂傚倸鍊搁崐鎼佸磹閻㈢ǹ纾婚柟鍓х帛閻撴瑧绱掔€n亞浠㈡い鎺嬪灮閹噣鏁撻敓锟�
D濠电姷鏁告慨浼村垂瑜版帗鍋夐柕蹇嬪€曢獮銏$箾閸℃ê鐒鹃柛鐕傛嫹
F缂傚倸鍊搁崐椋庣矆娓氣偓瀹曟劙宕妷锕€搴婇梺褰掑亰閸犳岸鎮虫繝姘叆闁绘洖鍊圭€氾拷
G婵犲痉鏉库偓妤佹叏閻戣棄纾绘繛鎴欏灪閸婅埖绻濋棃娑氬ⅱ闁绘粌顭烽弻銊╂偆閸屾稑顏�
H闂傚倸鍊风粈渚€骞栭位鍥ㄧ鐎n亜鍋嶉梺鍏肩ゴ閺呮繈鎮虫繝姘叆闁绘洖鍊圭€氾拷闂傚倸鍊风粈渚€骞夐敓鐘冲殞濡わ絽鍟崑瀣煙閻楀牊绶茬痪鎯ь煼閺屻劑鎮ら崒娑橆伓
J婵犵數濮烽弫鎼佸磻閻愬唽缂氭繛鍡樺姦濞堢晫绱掔€n厽纭堕柡鍡畵閺屻劑鎮ら崒娑橆伓
N闂傚倸鍊风粈渚€骞夐敓鐘偓鍐幢濞戞锕傛煟閹邦剚鎯堥悷娆欑畵閺屻劑鎮ら崒娑橆伓闂傚倷娴囬褔鏌婇敐澶婄劦妞ゆ帊鑳堕妴鎺楁煕閺傝法效闁诡喗枪缁犳盯濡烽敃鈧锟�
Q闂傚倸鍊搁崐鎼佸磹閹间焦鍋嬪┑鐘插閺嗘粓鏌熼悜姗嗘畷闁稿孩顨婇弻銊╂偆閸屾稑顏�
S濠电姷鏁搁崑鐐哄垂閸洖绠伴柟闂寸劍閺呮繈鏌曟径鍡樻珔缂佺姵鐓¢弻銊╂偆閸屾稑顏�婵犵數濮烽弫鎼佸磿閹寸姴绶ら柦妯侯槺閺嗭附銇勯幒鍡椾壕闂佹寧娲忛崹浠嬪极閹剧粯鏅搁柨鐕傛嫹闂傚倸鍊峰ù鍥ㄧ珶閸儺鏁嬬憸蹇涘箲閵忋倕绠涙い鏂垮⒔楠炴捇姊虹捄銊ユ珢闁瑰嚖鎷�婵犵數濮烽弫鎼佸磻濞戙垺鍤愭い鏍仦閸嬪鏌熼悙顒傜獮闁挎繂顦伴弲鎼佹煥閻曞倹瀚�闂傚倸鍊烽悞锕€顪冮崸妤€鍌ㄥ┑鍌溓归悿顕€鏌涜椤ㄥ繘寮繝鍕ㄥ亾楠炲灝鍔氭俊顐g懇瀹曟洟鎮㈤崗鑲╁弳闂佺粯娲栭崐鍦偓姘炬嫹
T濠电姷鏁告慨浼村垂瑜版帗鍊堕柛顐犲劚閻ょ偓绻濇繝鍌涘櫤闁哥姴妫濋弻銊╂偆閸屾稑顏�濠电姷鏁告慨浼村垂娴犲瑒鐑藉磼濞戞凹娲稿┑鐘诧工閹冲繘寮冲⿰鍫熺叆闁绘洖鍊圭€氾拷
W婵犵數濮甸鏍窗濡ゅ啯宕查柟鎵閳锋棃鏌涢弴銊ョ仭闁稿孩鍨块弻銊╂偆閸屾稑顏�闂傚倸鍊风粈渚€骞栭锕€鐤柣妤€鐗忕粻楣冩煃瑜滈崜鐔煎蓟閳╁啰鐟瑰┑鐘插暙椤忥拷