来源:网络资源 2022-10-28 15:37:34
因式分解
解法1、
x³-19x+30
从题目中,我们可以看到,这一道因式分解题,最高的次方根是三次方,最低的是一次方,而且仅有两个带方根的函数。这时候,我们开始对数值进行拆分,把19x拆分成10x+9x,这一步是解本题最难的部分,很多人都不容易想到,为什么要这样拆分?
x³-19x+30= x³-9x-10x+30=x(x²-9)-10(x-3)
到这一步之后,我们下一步是要再次找到公因式,我们可以看到(x-3)是公因式,因为(x² -9)可以分解成(x+3)(x-3)。
这一步的重点是,我们要看得到(x-9)是可以分解的。
即x(x²-9)-10(x-3)=x(x-3)(x+3)-10(x-3)=(x-3)(x+3x-10)
到这一步之后,我们就需要对(x+3x-10)进行再次分解,可以采用以下方法:
把x 和10进行拆分:
x -2
x 5
于是得出:x+3x-10=(x-2)(x+5)
这一步计算方法是运用了排列知识,需要一定的口算能力,就是把x 拆成两个x,运用排列知识,进行拆分,对角的数的乘积和等于3x,排列上上,下下对应的数值乘积分别等于x 和10。
所以说,本题解法一的答案就是:x³-19x+30=(x-3)(x-2)(x+5)
重点:
①排列的应用
②拆分、拼数
③找到公因式
欢迎使用手机、平板等移动设备访问中考网,2023中考一路陪伴同行!>>点击查看