来源:网络资源 2023-02-02 20:23:11
、配方法的应用
1
在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.
.用于求待定字母的值:
2
配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.
3
“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.
4.用于证明:
“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.
要点诠释:
“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好.
【总结升华】方程(1)的二次项系数是1,方程(2)的二次项系数不是1,必须先化成1,才能配方,这是关键的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解.同时要注意一次项的符号决定了左边的完全平方式中是两数和的平方还是两数差的平方.
欢迎使用手机、平板等移动设备访问中考网,2023中考一路陪伴同行!>>点击查看