来源:网络资源 2023-06-23 20:22:16
两角和差的三角函数公式:
cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
初中两角和与差的三角函数试题
例1、已知函数y=cos2x+sinxcosx+1,x∈R.(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
(1)解析:y=cos2x+sinxcosx+1=(2cos2x-1)++(2sinxcosx)+1=cos2x+sin2x+=(cos2x·sin+sin2x·cos)+=sin(2x+)+y取得最大值必须且只需2x+=+2kπ,k∈Z,即x=+kπ,k∈Z。所以当函数y取得最大值时,自变量x的集合为{x|x=+kπ,k∈Z}。
(2)将函数y=sinx依次进行如下变换:①把函数y=sinx的图象向左平移,得到函数y=sin(x+)的图象;②把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x+)的图象;③把得到的图象上各点纵坐标缩短到原来的倍(横坐标不变),得到函数y=sin(2x+)的图象;④把得到的图象向上平移个单位长度,得到函数y=sin(2x+)+的图象;
综上得到函数y=cos2x+sinxcosx+1的图象。点评:本题主要考查三角函数的图象和性质,考查利用三角公式进行恒等变形的技能以及运算能力。
例2、已知函数y=sinx+cosx,x∈R.(1)当函数y取得最大值时,求自变量x的集合;(2)该函数的图象可由y=sinx(x∈R)的图象经过怎样的平移和伸缩变换得到?
解析:(1)y=sinx+cosx=2(sinxcos+cosxsin)=2sin(x+),x∈Ry取得最大值必须且只需x+=+2kπ,k∈Z,即x=+2kπ,k∈Z。
所以,当函数y取得最大值时,自变量x的集合为{x|x=+2kπ,k∈Z}
(2)变换的步骤是:①把函数y=sinx的图象向左平移,得到函数y=sin(x+)的图象;②令所得到的图象上各点横坐标不变,把纵坐标伸长到原来的2倍,得到函数y=2sin(x+)的'图象;经过这样的变换就得到函数y=sinx+cosx的图象。
点评:本题主要考查三角函数的图象和性质,利用三角公式进行恒等变形的技能及运算能力。
编辑推荐:
欢迎使用手机、平板等移动设备访问中考网,2023中考一路陪伴同行!>>点击查看