来源:网络资源 2023-09-13 12:09:03
一、轴对称图形
1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点
3、轴对称图形和轴对称的区别与联系
4.轴对称的性质
①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线
1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。
2.线段垂直平分线上的点与这条线段的两个端点的距离相等
3.与一条线段两个端点距离相等的点,在线段的垂直平分线上
三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
点(x, y)关于x轴对称的点的坐标为______.
点(x, y)关于y轴对称的点的坐标为______.
2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等
四、(等腰三角形)知识点回顾
1.等腰三角形的性质
①.等腰三角形的两个底角相等。(等边对等角)
②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)
2、等腰三角形的判定:
如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
五、(等边三角形)知识点回顾
1.等边三角形的性质:
等边三角形的三个角都相等,并且每一个角都等于600 。
2、等边三角形的判定:
①三个角都相等的三角形是等边三角形。
②有一个角是600的等腰三角形是等边三角形。
3.在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
4、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则b/2
④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=(180-∠A)/2
5、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
编辑推荐:
欢迎使用手机、平板等移动设备访问中考网,2025中考一路陪伴同行!>>点击查看
B闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐蹭罕濠德板€曢幊搴㈩攰闂備胶绮崝鏇㈠箹椤愩倖鍠嗛柨鏇炲€归悡銉╂煟閺囩偛鈧湱鈧熬鎷�
C闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇氶檷娴滃綊鏌涢幇鍏哥敖闁活厽鎹囬幃妤呭垂椤愩倖鎲欐繝娈垮枟婵炲﹪寮婚妸鈺傚亞闁稿本绋戦锟�闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鍓х帛閸嬨倝鏌曟繛鐐珔缂佲偓婢跺绠鹃柛鈩兩戠亸顓犵磼閳ь剟宕掗悙瀵稿弳闂佺粯娲栭崐鍦偓姘炬嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣銏⑶圭壕濠氭煙閸撗呭笡闁绘挻鐟х槐鎺斺偓锝庡亜椤曟粓鏌熼惂鍝ョМ闁哄矉缍侀獮娆撳礋椤掆偓椤忥拷闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣銏⑶圭壕濠氭煙閸撗呭笡闁绘挻鐟х槐鎺斺偓锝庝簽娴犮垺銇勯幒瀣伄闁诡噮鍣i弫鎾绘晸閿燂拷
D婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸嬪鏌曡箛瀣偓鏇㈢嵁閵忥紕绠鹃柛鈩兠悞楣冩煕閻曞倹瀚�
F缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾鐎规洘鍔欏畷顐﹀Ψ閿曗偓鎼村﹪姊鸿ぐ鎺戜喊闁哥姵宀搁幃铏節濮橆厾鍙嗛梺缁樻礀閸婂湱鈧熬鎷�
G濠电姴鐥夐弶搴撳亾濡や焦鍙忛柣鎴f绾剧粯绻涢幋娆忕仾闁稿﹨鍩栫换婵嬫濞戞艾鈪遍梺缁樼矊椤兘寮婚妸鈺傚亞闁稿本绋戦锟�
H闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曚綅閸ャ劎顩烽悗锝庝簻閸嬪秹姊洪崗鑲┿偞闁哄懏绻堥幃铏節濮橆厾鍙嗛梺缁樻礀閸婂湱鈧熬鎷�闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩鍐叉疄婵°倧绲介崯顖炲磻鐎n喗鐓欓柣妤€鐗婄欢鑼棯閹岀吋闁哄被鍔戦幃銈夊磼濞戞﹩浼�
J濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰斀缂傛碍绻涢崱妯哄Е婵炲牏鏅槐鎺斺偓锝庡幗绾爼鏌¢崱顓犵暤闁哄被鍔戦幃銈夊磼濞戞﹩浼�
N闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁撻悩顔瑰亾閸愵喖骞㈡繛鎴烆焸閿曞倹鐓熼柟閭﹀墯閹牓鎮峰▎娆戠暤闁哄被鍔戦幃銈夊磼濞戞﹩浼�闂傚倸鍊峰ù鍥敋瑜旈弻濠囨晲婢跺﹦鍔﹀銈嗗笂閼冲爼濡撮幒妤佺厱闁哄倽娉曟晥闂佽鍠楁灙缂佺姵鐩俊鐑芥晝閳ь剟顢旈敓锟�
Q闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸劍閸嬪鈹戦悩鎻掝仾闁哄棙绮撻弻鐔兼倻濮楀棙鐣烽梺绋垮椤ㄥ﹪寮婚妸鈺傚亞闁稿本绋戦锟�
S婵犵數濮烽弫鎼佸磻閻愬搫鍨傞柛顐f礀缁犱即鏌熼梻瀵稿妽闁哄懏绻堥弻鏇熷緞閸℃ɑ鐝旂紓浣哄У閻擄繝寮婚妸鈺傚亞闁稿本绋戦锟�濠电姷鏁告慨鐑藉极閹间礁纾块柟瀵稿Т缁躲倝鏌﹀Ο渚Ш闁哄棴闄勯妵鍕箳閸℃ぞ澹曢梻浣瑰濞插繘宕规禒瀣瀬闁瑰墽绮弲鎼佹煥閻曞倹瀚�闂傚倸鍊搁崐宄懊归崶銊х彾闁割偁鍎洪弫瀣喐韫囨稑绠查柕蹇嬪€曠粻娑欍亜閺傚灝鈷旀鐐存崌濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟�濠电姷鏁告慨鐑藉极閹间礁纾绘繛鎴欏灪閸ゆ劖銇勯弽顐沪闁稿顑夐弻鐔兼倷椤掑倻鐛梺鎸庣箓椤︿即寮查幖浣圭叆闁绘洖鍊圭€氾拷闂傚倸鍊搁崐鐑芥倿閿曗偓椤啴宕稿Δ鈧崒銊モ攽閸屾簱褰掓偪椤曗偓閺屾稖顦虫い銊ョ箻瀵偅绻濋崟銊ヤ壕妤犵偛鐏濋崝姘繆椤愶絿鎳囩€规洘娲熼幃銏ゅ礂閼测晛寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�
T婵犵數濮烽弫鍛婃叏娴兼潙鍨傜憸鐗堝笚閸婂爼鏌涢鐘插姎闁汇倗鍋撶换婵囩節閸屾稑娅ら梺鍝ュТ濡繈寮婚妸鈺傚亞闁稿本绋戦锟�婵犵數濮烽弫鍛婃叏娴兼潙鍨傚ù鐘茬憭閻戣棄纾兼繛鎴炲嚬濞茬ǹ鈹戦悩璇у伐闁瑰啿绻樺鍐测堪閸喓鍙嗛梺缁樻礀閸婂湱鈧熬鎷�
W濠电姷鏁告慨鐢割敊閺嶎厼绐楁俊銈呭暞瀹曟煡鏌熼幍顔碱暭闁抽攱妫冮弻娑㈠即閵娿儳浠梺绋垮閸ㄥ潡寮婚妸鈺傚亞闁稿本绋戦锟�闂傚倸鍊搁崐椋庣矆娓氣偓楠炴牠顢曢敃鈧悿顕€鏌eΔ鈧悧蹇曠不妤e啯鐓冪憸婊堝礈閻旂厧钃熼柍鈺佸暟閻熺懓鈹戦悩鎻掓殭妞ゅ骏鎷�
X闂傚倸鍊峰ù鍥х暦閻㈢ǹ绐楅柟鎷屽焽閳ь剙鍟村畷銊р偓娑櫭埀顒冨煐缁绘繈妫冨☉鍗炲壉闂佺ǹ顑傞弲鐘诲蓟閵娾晜鍋嗛柛灞剧☉椤忥拷
Z闂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т缁愭淇婇妶鍛櫣闁搞劌鍊块弻锝夊閵忊剝姣勯梺缁樼矊椤兘寮婚妸鈺傚亞闁稿本绋戦锟�