您现在的位置:中考 > 知识点库 > 初中数学知识点 > 平面直角坐标系
向量的有关概念和公式 如果数轴上的任意一点沿着轴的正向或负向移动到另一个点,则说点在轴上作了一次位移.位移是一个既有大小又有方向的量,通常叫做位移向量,简称向量,记作.如果点移动的方向与数轴的正方向相同
2022-05-31
两点的距离公式和中点公式 1.对于数轴上的两点,设它们的坐标分别为,,则的距离为,的中点的坐标为. 由于表示数轴上两点与的距离,所以在解一些简单的含绝对值的方程或不等式时,常借助于数形结合思想,将问题转化
2022-05-31
坐标方法的简单应用: 1.用坐标表示地理位置 2.用坐标表示平移 在测量学中使用的平面直角坐标系统,包括高斯平面直角坐标系和独立平面直角坐标系。 通常选择: 高斯投影平面(在高斯投影时)或测区内平均水准面的切平
2022-05-31
特殊位置的点的坐标的特点: 1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。 2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。 3.在任意的两点中,如果两点的横坐
2022-05-31
常见考法 (1)由点的位置确定点的坐标,由点的坐标确定点的位置;(2)求某些特殊点的坐标。 误区提醒 (1)求点的坐标时,容易将横、纵坐标弄反,还容易忽略坐标符号;(2)思考问题不周,容易出现漏解。(如点P
2022-05-31
1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。 2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。 3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行
2022-05-31
平行于坐标轴的直线上的点: 平行于x轴的直线上的点的纵坐标相同; 平行于y轴的直线上的点的横坐标相同。
2022-04-16
各个象限内点的特征 第一象限:(+,+) 点P(x,y),则x 0,y 0; 第二象限:(-,+) 点P(x,y),则x 0,y 0; 第三象限:(-, -) 点P(x,y),则x 0,y 0; 第四象限:(+,-) 点P(x,y),则x 0,y 0;
2022-04-16
平面直角坐标特点 1、平行于坐标轴的直线的点的坐标特点: 平行于x轴(或横轴)的直线上的点的纵坐标相同; 平行于y轴(或纵轴)的直线上的点的横坐标相同。 2、各象限的角平分线上的点的坐标特点: 第一、三象限角平分
2022-04-16
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反) 2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同) 3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐
2022-04-16
2022-02-27
2022-02-27
2022-02-27
2022-02-27
2022-02-27
B闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愯弓缃曟繝寰锋澘鈧洟骞婃惔銏╂敯闂傚倷鑳剁划顖炲礉閺囥垹绠规い鎰╁€栭崰鍡涙煥閺囩偛鈧綊鎮¢妷鈺傜厽闁哄洨鍋涢埀顒€婀遍埀顒佺啲閹凤拷
C闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸婂潡鏌ㄩ弴姘舵濞存粌缍婇弻娑㈠箛閸忓摜鏁栭梺娲诲幗閹瑰洭骞冨Δ鍛瀭妞ゆ劑鍊栭幉娆愮節濞堝灝鏋熷┑鐐诧躬瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柛顐f礀缁犵娀鏌熼崜褏甯涢柛瀣ㄥ€濋弻鏇熺箾閻愵剚鐝旂紓浣插亾濠㈣泛顑囩粻楣冩煕閳╁叐鎴犱焊椤撶姷纾奸柍褜鍓熷畷鎺楁倷鐎电ǹ寮抽梻浣虹帛濞叉牠宕愰崷顓涘亾濮樼偓瀚�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i姀鈶跺湱澹曟繝姘厵闁告挆鍛闂佺粯鎸婚悷褏妲愰幒鏂哄亾閿濆骸浜滄い鏇熺矒閺岀喖鎯傞崫銉滈梺鍝勭焿缂嶄線鐛▎鎾崇妞ゆ巻鍋撴い蹇ユ嫹闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i姀鈶跺湱澹曟繝姘厵闁告挆鍛闂佺粯鎸婚悷褏妲愰幒鏂哄亾閿濆簼绨藉ù鐘灪閵囧嫰骞掔€n亞浼勯梺璇″櫘閸o綁寮幘缁樻櫢闁跨噦鎷�
D濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿顦甸弻鏇$疀鐎n亖鍋撻弴銏㈠祦闁靛骏绱曠粻楣冩煕閳╁厾顏堟倿妤e啯鐓曢柣鏇炲€圭€氾拷
F缂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕閻庤娲橀崝娆忕暦椤愶箑唯闁挎洍鍋撻幖鏉戯躬濮婇缚銇愰幒鎴滃枈闂佸摜濮靛畝鎼佸箖閾忣偆绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
G婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁惧墽绮换娑㈠箣濞嗗繒浠鹃梺绋匡龚閸╂牜鎹㈠┑瀣棃婵炴垶鑹鹃埅閬嶆⒑缂佹ḿ鐭婃い顓犲厴瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
H闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇氱秴闁搞儯鍔庨々鐑芥倵閿濆簼绨婚柛瀣Ч濮婃椽宕楅懖鈹垮仦闂佸搫鎳忕换鍫ュ箖閾忣偆绡€婵﹩鍘鹃崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐閸愬弶鐤勫┑掳鍊х徊浠嬪疮椤栫偛纾婚悗锝庡枟閻撴瑩鏌eΔ鈧悧濠勬閼碱剛妫柟顖嗗瞼鍚嬮梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�
J婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧鏌i幇顒€鏂€缂傚倹纰嶇换娑㈠幢濡搫袝濠电偛鐗忛弲顐ゆ閹烘柡鍋撻敐搴″箺缁绢厼鐖奸弻锟犲幢椤撶姷鏆ら梺鍝勮閸旀垿骞冮妶澶婄<婵炴垶锕╂导锟�
N闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偛顦甸弫鎾绘偐椤旂懓浜鹃柛鎰靛枛楠炪垺绻涢幋鐑嗙劯闁挎洖鍊归悡鐔兼煙闁箑澧柟顖氱墦閹嘲鈻庡▎鎴犳殼闂佸搫琚崝鎴﹀箖閵堝纾兼繛鎴烇供娴硷拷闂傚倸鍊搁崐宄懊归崶顒夋晪鐟滄棃寮绘繝鍥ㄦ櫜濠㈣泛锕﹂崝锕€顪冮妶鍡楃瑐闁煎啿鐖兼俊鎾箳濡や胶鍘遍梺鍝勫€藉▔鏇熸櫏闂備浇顕栭崰妤佺仚缂備胶濮甸惄顖涗繆閻戣姤鏅濋柍褜鍓熼、鏃堟晸閿燂拷
Q闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵稿妽闁稿顑呴埞鎴︽偐閹绘帩浠鹃梺鍝勬缁捇寮婚悢鍏煎€绘慨妤€妫欓悾鐑芥⒑缁嬪灝顒㈡い銊ワ躬瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷
S濠电姷鏁告慨鐑藉极閹间礁纾婚柣鎰惈閸ㄥ倿鏌涢锝嗙缂佺姳鍗抽弻鐔兼⒒鐎电ǹ濡介梺鍝勬噺缁诲牓寮婚弴鐔风窞闁糕剝蓱閻濇梻绱撴担鍝勑i柣鎿勭節瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾惧潡鏌熺€电ǹ孝缂佽翰鍊濋弻锕€螣娓氼垱楔闂佸搫妫撮梽鍕Φ閸曨垰绠抽柛鈩冦仦婢规洟姊绘担鐟邦嚋婵炴彃绻樺畷瑙勭鐎n亝鐎梺鐟板⒔缁垶寮查幖浣圭叆闁绘洖鍊圭€氾拷闂傚倸鍊搁崐鎼佸磹瀹勬噴褰掑炊閵娧呭骄闂佸壊鍋侀崕娲极鐎n剚鍠愰煫鍥ㄧ☉缁犳煡鏌曡箛瀣偓鏇犵不濞戞瑣浜滈柡鍌氱仢閳锋梹顨ラ悙瀛樺磳婵﹨娅i幑鍕Ω閵夛妇褰氶梻浣烘嚀閸ゆ牠骞忛敓锟�婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柟闂寸绾剧粯绻涢幋娆忕仾闁搞倖鍔栭妵鍕冀椤愵澀娌梺绋款儏椤戝寮婚悢鍏煎€锋い鎺戝€婚悰顕€姊洪幐搴g畵妞わ缚鍗冲鏌ュ箹娴e湱鍙嗛梺缁樻礀閸婂湱鈧熬鎷�闂傚倸鍊搁崐鎼佸磹閻戣姤鍊块柨鏇楀亾妞ゎ亜鍟村畷绋课旈埀顒勫磼閵娿儮鏀介柛灞剧氨瑜版帗鍋い鏇楀亾闁哄本绋栭ˇ铏亜閵娿儳绠荤€殿噮鍋呯换婵嬪礋閵娿儰澹曞Δ鐘靛仜閻忔繈宕濆顓濈箚妞ゆ劧绲块幊鍥┾偓瑙勬礃濞茬喖骞冮姀銈呯闁兼祴鏅涘鎶芥⒒娴h櫣甯涙繛鍙夌墵瀹曟劙宕烽娑樹壕婵ḿ鍋撶€氾拷
T濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倻鎲搁悧鍫濈瑲闁稿﹤鐖奸弻娑㈩敃閻樻彃濮庨梺姹囧€楅崑鎾舵崲濠靛洨绡€闁稿本绋戝▍銈夋⒑閸濄儱孝婵☆偅绻堝濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�濠电姷鏁告慨鐑藉极閸涘﹥鍙忓ù鍏兼綑閸ㄥ倸霉閻樿尙鎲柣鎴f绾惧吋绻涢幋鐐插毈婵炶尙枪閳规垿鎮╃拠褍浼愰梺鐟板暱缁绘ê顕i崘娴嬪牚闁割偆鍠撻崣鍡涙⒑缂佹ɑ绀€闁稿﹤婀遍埀顒佺啲閹凤拷
W婵犵數濮烽弫鍛婃叏閻㈠壊鏁婇柡宥庡幖缁愭淇婇妶鍛殲鐎规洘鐓¢弻鐔煎箥椤旂⒈鏆梺鎶芥敱濡啴寮诲☉銏犲嵆闁靛ǹ鍎虫禒顓㈡⒑缁嬪灝顒㈤柛銊ユ健瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剟鎮块鈧弻锝呂旈埀顒勬偋韫囨洜涓嶅Δ锝呭暞閻撳啰鎲稿⿰鍫濈闁绘梻鍘ч拑鐔兼煃閳轰礁鏆熼柣鐔烘嚀閳规垿鎮╅幓鎺撴濡炪倕楠忛幏锟�
X闂傚倸鍊搁崐宄懊归崶褏鏆﹂柣銏⑶圭粣妤呮煙閹峰苯鐒介柍褜鍓欓崯鏉戠暦閵娧€鍋撳☉娅亪鍩€椤掑啫鐓愮紒缁樼箞濡啫鈽夐崡鐐插闂備胶枪椤戝倿寮查悩璇茶摕闁靛ň鏅滈崑鍡涙煕鐏炲墽鈽夋い蹇ユ嫹
Z闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣椤愪粙鏌ㄩ悢鍝勑㈢紒鎰殕娣囧﹪濡堕崨顔兼闂佹悶鍔岄崐鍧楀蓟閿濆顫呴柕蹇婂墲濮e嫰姊虹紒妯肩煀妞ゎ厾鍏樺濠氬Ω閳哄倸浜為梺绋挎湰缁嬫垿顢旈敓锟�