您现在的位置:中考 > 知识点库 > 初中数学知识点 > 轴对称
轴对称变换 知识点1轴对称变换 由一个平面图形得到它的轴对称图形叫做轴对称变换. 成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形可以看作以它的一部分为基础,经轴对称
2022-04-14
(1)轴对称:如果把一个图形沿着一条直线对折后,与另一个图形重合,那么这两个图形成轴对称,两个图形中相互重合的点叫做对称点,这条直线叫做对称轴。 (2)轴对称图形:如果把一个图形沿某条直线对折,对折后图形的
2022-04-14
常见图形的对称轴 ①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。 ②角有一条对称轴,是角平分线所在的直线。 ③等腰三角形有一条对称轴,是顶角平分线所在的直线。 ④等边三角形有三条对称轴,分
2022-04-14
线段垂直平分线: (1)定义:垂直平分一条线段的直线是这条线的垂直平分线。 (2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等; ②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 注意:
2022-03-04
用坐标表示轴对称小结: 在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等. 2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相
2022-03-04
轴对称图形 1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 2. 把一个图形沿着某一条直
2022-03-04
对称轴的条数: 角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对
2022-03-04
用坐标表示轴对称 平行于坐标轴的直线对称 点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y); 点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y)。
2022-03-04
轴对称与轴对称图形 1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。 2.轴对称图形:如果一个
2022-03-04
一、轴对称与轴对称图形: 1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。 2.轴对称图形:如
2022-03-04
中心对称的性质: (1)关于中心对称的两个图形是全等形; (2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分; (3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
2022-03-04
轴对称图形: 线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆
2022-03-04
轴对称性质注意事项: (1)关于某直线对称的两图形全等,但两全等图形不一定轴对称; (2)对称轴是对应点连线的垂直平分线; (3)对应点连线互相平行; (4)成轴对称的两个图形,如果它们的对应线段或对应线段的延长线相交
2022-03-04
已知:如下图,A、B两点是直线l同旁的两个定点 问题:在直线l上求一点P,使得PA+PB的值最小. 分析:作点A关于直线l的对称点A ,连结A B,交直线于点P,此时PA+PB=A B最小.证明过程很简单,在直线上再任取一点P ,P
2022-03-04
用坐标表示轴对称 坐标轴对称 点P(x,y)关于x轴对称的点的坐标是(x,-y) 点P(x,y)关于y轴对称的点的坐标是(-x,y) 原点对称 点P(x,y)关于原点对称的点的坐标是(-x,-y) 坐标轴夹角平分线对称 点P(x,y)关于第一、
2022-03-04